HYPERLOOP-ARE WE FAST ENOUGH

We live in an age of unbelievable technological progress — one would think such changes would have brought about a new age of utopian technology. Yet in many areas of life, things don’t seem to have changed all that much, and transportation is a woeful example of this. The roads are still lined with cars, the skies speckled with airliners. Science fiction foresaw flying cars and teleporters; the 21st century settled for Segways.

Dreams never die, however, and the fantasy of futuristic transportation is very much alive right now as exemplified by a concept called the Hyperloop. While it’s not as mind-shattering as a teleporter or as fun as a personal jetpack, the Hyperloop could revolutionize mass transit, shortening travel times on land and reducing environmental damage in the process.World we stand today is faster than we can imagine everything has been developed to the lightning fast technologies but i dont think that we are fast enough in travelling but everytime there stays someone in this world who comes forward and proposes some new concepts to make this  world a better place one such concept is hyperloop by Elan Mus. so whats hyperloop how can it make us faster?

HYPERLOOP:


                         A Hyperloop is a proposed mode of passenger and/or freight transportation, first used to describe an open-source vactrain design released by a joint team from Tesla and SpaceX. Drawing heavily from Robert Goddard's vactrain, a hyperloop comprises a sealed tube or system of tubes through which a pod may travel free of air resistance or friction conveying people or objects at high speed while being very efficient.



Developments in high-speed rail have historically been impeded by the difficulties in managing friction and air resistance, both of which become substantial when vehicles approach high speeds. The vactrain concept theoretically eliminates these obstacles by employing magnetically levitatingtrains in evacuated (airless) or partly evacuated tubes, allowing for speeds of thousands of miles per hour. However, the high cost of maglev and the difficulty of maintaining a vacuum over large distances has prevented this type of system from ever being built. The Hyperloop resembles a vactrain system but operates at approximately one millibar (100 Pa) of pressure.

WHAT IS HYPERLOOP AND HOW DOES IT WORK?

Hyperloop is a proposed system of transport that would see pods or containers travel at high speeds through a tube that has been pumped into a near-vacuum. The train pods would either float using magnetic levitation technology or float using air caster "skis", similar to how pucks travel across an air hockey table.

With so little friction in the tunnel, the pods would be able to travel at immense speeds with a projected top speeds of 760mph.

The pod would initially launch using an electric motor before levitation takes place and the pod can glide at cruising speed in the low-pressure environment. Tunnels for the Hyperloop would be built either above or below ground, at only around 3m in diameter, taking up a smaller ground footprint than traditional rail and road. Many of the current designs feature autonomous pods that can be launched on demand as frequently as every 20 seconds. Others suggest eco-friendly designs, powering the pressure pumps with clean energy such as solar. One of the biggest problems with anything moving is friction, both against surfaces and the environment the pod is moving through. Hyperloop proposes to move away from traditional wheels by using air bearings for pods instead. This will have the pod floating on air. It's similar to maglev, in which the electromagnetic levitation of the train means there is no friction like a traditional train that runs on tracks. This is how current maglev trains can achieve super speeds, like the 500km/h maglev train in Japan. One Hyperloop proposal, from Virgin Hyperloop One, uses passive magnetic levitation, meaning the magnets are on the trains and work with aluminium track. Current active maglev needs powered tracks with copper coiling, which can be expensive.Musk's Hyperloop will take this to the next level by traveling through low pressure tubes.

LOW PRESSURE:

Hyperloop will be built in tunnels that have had some of the air sucked out to lower the pressure. So, like high-altitude flying, there's less resistance against the pod moving through the tunnel, meaning it can be much more energy efficient, which is desirable in any transit system. The original VHST proposed using a vacuum, but there's an inherent difficulty in creating and maintaining a vacuum in a tunnel that will have things like stations, and any break in the vacuum could potentially render the entire system useless. For Hyperloop, the idea is to lower the air pressure, a job that could be done by regularly placed air pumps.
Low pressure, however, means you still have some air in the tunnels. The air bearing and passive maglev ideas are designed not only to levitate the pod, but also see the pod moving through the air, rather than pushing the air infront of it and dragging it along behind. The air cushion will see the air pumped from the front of the pod to the rear via these suspension cushions. The tunnels envisioned are metal tubes, elevated as an overground system. Musk has suggested that solar panels running on the top of the tunnels could generate enough electricity to power the system. It could run as an underground system, too.



INITIAL DESING:
The Hyperloop concept operates by sending specially designed "Capsules" or "pods" through a steel tube maintained at a partial vacuum. In Musk's original concept, each capsule floats on a 0.02–0.05 in (0.5–1.3 mm) layer of air provided under pressure to air-caster "skis", similar to how pucks are suspended in an air hockey table, while still allowing for speeds that wheels cannot sustain. Hyperloop One's technology uses passive maglev for the same purpose. Linear induction motors located along the tube would accelerate and decelerate the capsule to the appropriate speed for each section of the tube route. With rolling resistance eliminated and air resistance greatly reduced, the capsules can glide for the bulk of the journey. In Musk's original Hyperloop concept, an electrically driven inlet fan and air compressor would be placed at the nose of the capsule to "actively transfer high-pressure air from the front to the rear of the vessel," resolving the problem of air pressure building in front of the vehicle, slowing it down.[1] A fraction of the air is shunted to the skis for additional pressure, augmenting that gain passively from lift due to their shape. Hyperloop One's system does away with the compressor.



In the alpha-level concept, passenger-only pods are to be 7 ft 4 in (2.23 m) in diameter[1] and projected to reach a top speed of 760 mph (1,220 km/h) to maintain aerodynamic efficiency [1] (Section 4.4). The design proposes passengers experience a maximum inertial acceleration of 0.5 g, about 2 or 3 times that of a commercial airliner on takeoff and landing.

NEED FOR THE HYPERLOOP:
 Conventional means of transportation (road, water, air, and rail) tend to be some mix of expensive, slow, and environmentally harmful. Road travel is particularly problematic, given carbon emissions and the fluctuating price of oil. As the environmental dangers of energy consumption continue to worsen, mass transit will be crucial in the years to come.

Rail travel is relatively energy efficient and offers the most environmentally friendly option, but is too slow and expensive to be massively adopted. At distances less than 900 miles, supersonic travel is unfeasible, as most of the journey would be spent ascending and descending (the slowest parts of a flight.) Given these issues, the Hyperloop aims to make a cost-effective, high speed transportation system for use at moderate distances. As an example of the right type of distance, Musk uses the route from San Francisco to L.A. (a route the high-speed rail system will also cover). The Hyperloop tubes would have solar panels installed on the roof, allowing for a clean and self-powering system.

There are of course drawbacks. Most notably, moving through a tube at such high speeds precludes large turns or changes in elevation. As a result, the system is optimal for straightforward trips across relatively level terrain.

California is, of course, susceptible to earthquakes, and the Hyperloop design takes this into account. The tubes would be mounted on a series of pylons spread along the route, each pylon placed every 100 feet or so. The pylons will allow for slip due to thermal expansion and earthquakes, ensuring that the tubes will not be broken by any such movement.


Realistically, the most important problem in getting any project off the ground is money, doubly so when talking about a public work. Even if one can produce an impressive blueprint, there are still issues of public approval, legislation, regulations, and contractors to worry about. Fortunately, The Hyperloop would be a cost-saving measure, especially when measured against the corpulent rail project currently underway. Musk’s white paper for the Hyperloop estimates the total cost could be kept under six billion dollars. Meanwhile, phase one of the California high-speed rail project is expected to cost at least $68 billion.

DEVELOPEMENT ABROAD:
While SpaceX’s contest was a good showcase for engineering students, the Hyperloop concept has also garnered interest from businessmen. Startups such as Hyperloop One (formerly Hyperloop Technologies) and Hyperloop Transportation Technologies (HTT) are working on Hyperloop systems of their own, and what they lack in clever naming they make up for in ambition. Both companies are building their own test tracks, and HTT has recently announced a partnership with Oerlikon Leybold Vacuum, an engineering firm specializing in vacuum technology, and Aecom, an international corporation providing technical project support. The companies will receive stock options in exchange for their involvement.HTT’s partnership with Oerlikon and Aecom is a massive development. International, publicly traded companies have deemed the Hyperloop concept solid enough to invest in. They also bring with them much-needed experience: Oerlikon has been a leader in vacuum technology since the dawn of the 20th century, while Aecom has been involved in many high profile engineering projects such as the Cape Town Stadium. This partnership represents a tremendous vote of confidence in the Hyperloop, and brings much needed legitimacy to a project that had been, until recently, a pipe dream.

January 2016 proved to be a big month for Hyperloop progress. HTT applied for a permit to begin construction on a test track along the I-5 freeway in Quay Valley, California. Meanwhile, Elon Musk’s SpaceX, progenitor of the Hyperloop idea, partnered with Aecom to build its own test track in Hawthorne, California. With three test tracks currently in development, the Golden State is at the forefront of Hyperloop development.

In March 2016, HTT announced its intention to build a network of Hyperloop tracks connecting Vienna, Bratislava, and Budapest, with Slovakia serving as a hub between the three.

In May 2016, Hyperloop One showed off its prototype system at a test track in Las Vegas.

At an April 2017 conference called “Vision for America,” Hyperloop One revealed several proposed tracks that it could build across the United States. The proposed routes include a track uniting Dallas, Houston, and Laredo — and stops in between — with a total transit time of roughly an hour or less. Throughout the proposals, the company laid out economic benefits — a route from Chicago to Pittsburgh could create an “economic megaregion” — and environmental ones; Hyperloop One noted that a proposed track from Orlando to Miami could avoid the Everglades.

HOW MUCH WILL IT COST?

One of the main points stressed by Hyperloop converts is the potential cost saving of the technology. Compared to high-speed rail travel, Hyperloops potentially need far less ground space to construct their tunnels and far less energy to transport the pods than conventional trains.

Musk projected that his proposed Los Angeles route would cost around $6bn, or $11.5m per mile, compared to $68bn for a high-speed rail link. However, leaked documents from Hyperloop One suggested even a shorter 107-mile loop in California would still cost up to $13bn, or $121m per mile                    

PROPOSED SPEED:
Hyperloop is being proposed as an alternative to short distance air travel, where the system will be much faster than existing rail networks and much cleaner that flight. Hyperloop isn't about going as fast as possible, because you'll have to deal with high G forces when it came to turns, which isn't ideal for passenger travel. Speeds of over 700mph are suggested for journeys.

But there are practical implications that have to be considered on a short stop-start journey, such as the acceleration and deceleration sensation that passengers would go through.

No comments:

Post a Comment

About

Pages